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Abstract

The Fe–Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in
the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of
this system, in particular that proposed by Ludwig et al. [M. Ludwig, D. Farkas, D. Pedraza, S. Schmauder, Model. Simul.
Mater. Sci. Eng. 6 (1998) 19]. In this work we extract thermodynamic information from this interatomic potential. We
obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance
to radiation damage studies. We compare the results with the predicted phase diagram based on other potential, as calcu-
lated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental
results, focusing on the pure components and discuss the applicability of these potentials. Improved potentials, primarily
for the pure components, should be developed to account for proper phase stability in the solid phase up to melting.
Finally we suggest an approach to improve existing potentials for this system.
� 2005 Elsevier B.V. All rights reserved.

PACS: 81.30.Bx; 82.60.Lf; 02.70.Ns; 65.40.�b; 64.75.+g; 82.20.Wt
1. Introduction

As Computational Materials Science becomes a
standard approach to study complex problems in
solids, the requirement of accurate, predictive simu-
lation tools stresses the necessity of models for the
interactions that are able to reproduce important
fundamental properties of materials. To capture
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the length scale that is relevant to study mechanical
properties and microstructures, simple classical
empirical total energy expressions are required to
deal with the large number of atoms this class of
problems requires. Usually the models used are of
the Embedded Atom Method (EAM) type, referred
to as ‘many-body’ potentials. Most of the vast
amount of work done using these classical poten-
tials addresses either pure elements or intermetallic
compounds, only a few address alloys.

Many properties of some purematerials, in partic-
ular the late fcc transitionmetals, are well reproduced
.
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with this approach. For other metals, and in particu-
lar Fe, the situation is much less satisfactory, due to
the importance of magnetism and the angular com-
ponents of bonding in thismaterial. In addition,most
of the available potentials for the pure components
are only tested at low temperature.

Computational materials science has being
paying attention to Fe–Cu for a long time, to follow
the radiation-induced Cu precipitation. The first
report on bcc Cu precipitates dates from 1990 [1,2]
using a potential that has a stable bcc phase for
Cu [3], but this study did not address the Fe–Cu
problem because of the absence of an alloy poten-
tial. The first potential for the alloy appeared in
1995 [4–6] and precipitation as well as vacancy for-
mation inside the precipitates were studied. Using a
simplified energetics, lattice Monte Carlo simula-
tions were extensively used to analyze precipitation
[7–9]. A different Fe–Cu potential was proposed in
1998 [10] and used to study the coherency loss of
precipitates [11]. Additional coherence loss studies
were reported in 2001 [12] using a potential reported
in [3].

In a recent series of papers, we addressed the
problem of alloy description from the perspective
of thermodynamics rather than from the properties
of a single impurity. We developed a series of codes
that calculate the free energy of a given phase by
implementing the switching Hamiltonian technique.
We applied the methodology to Au–Ni alloys based
on a single lattice (fcc) with a miscibility gap [13,14],
and to the more complex Fe–Cu system as described
by the Ackland–Bacon potential [15]. That work
showed various shortcomings of these potentials
with significant differences with the experimental
phase diagram [16]. In the present work, we analyze
the thermodynamics of Fe–Cu as predicted by the
Ludwig–Farkas potential [10], built upon the Cu
potential given by Voter [17] and the Fe potential
given by Simonelli et al. [18]. The goal is to test
the validity of this description for radiation damage
studies and to present a comparative study that will
help guide future development of interatomic poten-
tials for alloys in this system. In the following
section, we give a summary of the computational
method, with references to the full description that
we already published. In Section 3 we present the
calculated phase diagram and discuss the thermody-
namic properties of the unaries Cu and Fe and of
the Fe–Cu alloy system. We show that these poten-
tials give a better agreement in the regions of the
phase diagram relevant to radiation damage studies.
We then discuss the regions where agreement needs
to be improved. We show that most of the short-
comings are in the regions of the pure components
and point out the properties that need to be
improved in order to obtain a better description of
this alloys system.

2. Free energy determination

The calculation of the thermodynamic properties
of an alloy implies the knowledge of the free energy
of the different phases as a function of composition
and temperature. The calculation of the free energy
is a multi-step process that requires several different
molecular dynamics (MD) runs. In recent papers,
we implemented a numerical package that allows
efficient and accurate calculation of it. For a com-
plete description of the method, we refer the reader
to those previous publications [13–15]. Here we only
highlight its basic aspects, together with the main
equations.

Following the methodology proposed in CALP-
HAD [19,20] we separate the problem of binary
alloys in terms of the properties of the pure elements
(i.e., the free energies of all possible phases of the
pure elements) and the properties of the mixtures.
The later are expressed in terms of excess enthalpy,
entropy and free energy. Excess quantities are
referred to the linear interpolation between the pure
elements, which represents the ideal solution. In this
way, the alloy description is conveniently separated
in two distinct parts: the description of the pure
elements on one hand, and the description of the
mixture on the other. The CALPHAD approach is
a standardized way to express the thermodynamic
information of a system. Once the free energies are
expressed in this way (suggested by the Scientific
Group Thermodata Europe (SGTE) [21]), the calcu-
lation of the quantities of interest and phase dia-
grams can easily be performed with available
application software such as Thermo-Calc [22].
Our numerical results can be compared with those
from thermodynamic databases that contain the
most accepted values for these quantities, taken
from Dinsdale’s compilation [23]. The latter consti-
tute for us what we take as experimental values
although not all data in the database are from
experimental assessment.

Let us first describe the procedure for the pure
element case. Using the Gibbs–Duhem equation
we calculate the free energy per particle at a given
temperature T, f(T). This equation is a thermody-



A. Caro et al. / Journal of Nuclear Materials 349 (2006) 317–326 319
namic integration between the state of interest and a
reference state at temperature T0 with known free
energy f(T0),

f ðT Þ ¼ f ðT 0Þ
T
T 0

� T
Z T

T 0

hðsÞ
s2

ds; ð1Þ

where h(s) is the enthalpy per particle. The enthalpy
is easily obtained from a MD run, and it is fitted
with a second-order polynomial in T that allows
an analytic integration in Eq. (1).

The coupling-constant integration, or switching
Hamiltonian method [24], is used to calculate
f(T0). We consider a system with Hamiltonian
H = (1 � k)W + kU, where U describes the actual
system (in this work, described with an EAM-type
Hamiltonian) and W is the Hamiltonian of the ref-
erence system, with known free energy. The param-
eter k switches from U (for k = 1) to W (for k = 0).
With this Hamiltonian we can evaluate the free-
energy difference between W and U by calculating
the reversible work required to switch from one
system to the other. The unknown free energy
associated with U, f(T0), is given by

f SolðT 0Þ ¼ fWðT 0Þ þ Df1;

Df1 ¼
1

N

Z 1

0

oH
ok

� �
dk ¼ 1

N

Z 1

0

hU � W ik dk;
ð2Þ

where fW(T0) is the free energy of the reference sys-
tem at T0. The integration is carried over the cou-
pling parameter k that varies between 0 and 1, and
h� � �i stands for the average in a (T, V, N) MD
simulation.

For the solid phases the reference system W is a
set of Einstein oscillators centered on the average
atomic positions, in the (T0, P = 0, N) ensemble that
is associated with the Hamiltonian U. The free
energy per atom of the Einstein crystal that is
known analytically [25] is given by

fEins ¼ �3kBT 0 lnðT 0=T EÞ; ð3Þ

where TE is the Einstein temperature of the oscilla-
tors, TE = hmE/kB where kB is the Boltzmann
constant, mE is the frequency of oscillation, and h

is the Planck constant. In our calculations we use
T Cu

E ¼ 343 K, T Fe
E ¼ 470 K. These values are in fact

arbitrary and are chosen so as to make the switching
integral, cf. Eq. (2), as smooth as possible to im-
prove numerical accuracy.
For the liquid phase, the reference systemW is an
ideal gas at the same temperature and density as the
EAM sample. The process to switch from U to W

involves an intermediate step to avoid particle over-
lap during the integration, namely we first compute
the free-energy difference between the true system
with potential U (the EAM potential) and a system
with a repulsive potential WL (soft spheres). As in
the case of the solid phase, the integration is carried
over the coupling parameter k that varies between 0
and 1. The system is kept at the constant volume V0,
that equilibrates the U Hamiltonian at temperature
T0 and P = 1 bar. Therefore, the free-energy change
for a pure element due to the switch is given by Df1
given by the second line of Eq. (2).

The second step is a reversible expansion of the
repulsive gas, from V0 and high pressure, to the
ideal gas limit, where the free energy can be calcu-
lated analytically, followed by a reversible compres-
sion to recover the initial density. The change in free
energy due to both processes is given by

Df2 ¼ kBT 0

Z q0

0

P
qkBT 0

� 1

� �
dq
q
; ð4Þ

where q0 = N/V0 is the particle density. After the
processes represented by Eq. (4) have taken place
we end up with an ideal gas at (T0, q0), whose free
energy is given analytically by: f Liq

W ðT 0;q0Þ ¼
kBT 0½lnðq0K

3Þ � 1�, where K is the de Broglie ther-
mal wavelength (K2 = h2/2pmkBT0, where m is the
atomic mass) [25]. Then the free energy of the liquid
phase is calculated as the sum of these 3
contributions,

gLiqðT 0Þ ¼ Df1 þ Df2 þ f Liq
W ðT 0; q0Þ. ð5Þ

Eqs. (1)–(5) give the free energies of the solid and
liquid phases for the pure elements as a function
of temperature.

The strategy for the alloy follows the same steps
as above, and at each composition a random gener-
ated sample is used as the starting configuration.
For the sample size we use, (5a0)

3, fluctuations of
the parameters of interest for different realizations
of the random solid solution are of the order of a
few meV/atom, which is of the order of the error
in the final results, so we use only one sample at
each composition. The free energy of the reference
mixture of Einstein oscillators can be calculated
using the following expression [14]:

fEinsðx; T 0Þ ¼ xf Cu
Eins þ ð1� xÞf Fe

Eins � T 0sconfðxÞ; ð6Þ
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Fig. 1. Energy difference along a Bain distortion with respect to
the equilibrium phase for Fe and Cu at 0 K.
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where x measures the Cu composition, and f Cu
Eins and

f Fe
Eins are given by Eq. (3). The configurational entro-
py per particle, sconf(x), is given by the usual expres-
sion �kB[xln x + (1 � x)ln(1 � x)], assuming the
solution is completely random. For the ideal gas,

fidðx; T 0; qÞ ¼ xf Cu
id ðqCuÞ þ ð1� xÞf Fe

id ðqFeÞ ð7Þ
or, by making the entropy of mixing appear
explicitly,

fidðx; T 0; qÞ ¼ xf Cu
id ðqÞ þ ð1� xÞf Fe

id ðqÞ � T 0sconfðxÞ;
ð8Þ

where q is the total density, qCu and qFe are the par-
tial densities (xq and (1 � x)q, respectively), and the
f i
id are given in the preceding section. These and
other useful expressions are carefully worked out
in Ref. [14].

These lead to the following general equation for
the free energy of each phase U:

g/ðx; T Þ ¼ A/ðxÞ þ B/ðxÞT þ C/ðxÞT 2

þ D/ðxÞT lnðT Þ � TsconfðxÞ. ð9Þ
Eq. (9) is obtained numerically from computer runs
that implement Eqs. (1)–(8) for each phase. We
obtain one set of coefficients {A,B,C,D} for each
composition studied. The relation between these
coefficients and the quadratic fit to the enthalpy is
h(T) = a � dT � cT2, while b is given by
b = g(T0)/T0 � a/T0 � dlnT0 � cT0.

To match the CALPHAD expression for the
Gibbs energy to Eq. (9), this expression is rewritten
in terms of three contributions that account for the
properties of the pure materials, the linear interpo-
lation between them, and the excess free energy of
the mixture, namely:

g/ðx; T Þ¼refg/ðx; T Þþidg/mixðx; T Þþxsg/mixðx; T Þ; ð10Þ
where the terms on the right-hand side are: the com-
position-weighted average Gibbs free energy per
atom associated with the pure elements (or free en-
ergy of the ideal solution), the Gibbs ideal mixing
energy, and the excess Gibbs energy due to non-
ideal contributions, respectively. The excess Gibbs
energy of mixing is expressed by a Redlich–Kister
polynomial expansion [26], and then the terms on
the right-hand side of Eq. (10), are expressed as
follows:

refg/ðx; T Þ ¼ ð1� xÞg/FeðT Þ þ xg/CuðT Þ;
idg/mixðx; T Þ ¼ kBT ½x ln xþ ð1� xÞ lnð1� xÞ�;

xsg/mixðx; T Þ ¼ xð1� xÞ
Xn

p¼0

pL/ðT Þð1� 2xÞp;
ð11Þ
where pL/
i;jðT Þ is the pth-order binary interaction

parameter relative to phase U, that is a function of
temperature. Some algebra transforms the set of
coefficients in Eq. (9) to those needed in Eq. (11).

Phase stability deserves special consideration in
the Fe–Cu system. In nature, as well as in computer
simulations, phases usually exist within limited
ranges of composition. Based on previous experi-
ence with the thermodynamics of EAM Au–Ni
alloys [13], and Fe–Cu with the Ackland–Bacon
potential [15,16], both solid phases, fcc and bcc,
were stable in the simulations at all compositions.
With the Fe–Cu Ludwig–Farkas potentials how-
ever, the situation is more complex: bcc Cu is unsta-
ble and fcc Fe is metastable. This can be seen in
Fig. 1 where the energy of both elements at zero
temperature is displayed along a Bain distortion.
Cu has an energy maximum for the bcc phase,
located 46 meV above the fcc energy. Fe in turn
has a shallow minimum for the fcc phase, 27 meV
above the equilibrium bcc value, but the height of
the potential barrier separating both phases is only
31 meV; at room temperature and above, thermal
excitations drive Fe away from the fcc phase
towards the bcc structure.

However, in numerical simulations on finite
systems and short times, this is not always seen,
and the instability usually appears as an abnormally
large entropy contribution to the free energy as
temperature is raised. This translates into an errone-
ous appearance of these unstable phases in the
phase diagram. To solve this problem we have to
introduce the stability information as an external
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constraint, restricting the domain of existence of the
phases to the compositions where we know they are
definitely stable, namely the bcc-solid solution in the
Fe-rich part of the phase diagram, and the fcc-solid
solution in the Cu-rich part. We retained then data
for Cu compositions up to 20 at.% in bcc, and above
80 at.% in fcc.

Unfortunately, to translate the data into the
CALPHAD equations, see Eqs. (10) and (11), that
are based on quantities that are in excess with
respect to the linear interpolation between the pure
elements, we still need expressions for the free
energy of fcc Fe and bcc Cu even if they represent
unstable or metastable phases. This requirement
introduces some arbitrariness in the procedure
whose effect is to introduce an uncertainty of
�100 K in the location of the invariant line in the
phase diagram. A practical way we have to circum-
vent this is the following: For unstable bcc Cu we
take the free energy corresponding to the stable
fcc phase and shift it by the energy of the unstable
bcc phase at 0 K, 47 meV/atom (see Fig. 1), namely,
g0bccCu ðT Þ ¼ gfccCuðT Þ þ DEbcc–fcc

Cu ðT ¼ 0 KÞ. For the free
energy of the fcc phase of Fe we use the value
obtained even if it is affected by finite size effects,
(a) (b)

(c) (d)

Fig. 2. Coefficients A, B, C, and D of the free energy, Eq. (9), for each p
and shift it by +15 meV/atom to avoid the intru-
sion of this phase in the Fe-rich part of the dia-
gram, namely g0fccFe ðT Þ¼gfccFe ðT Þþ15meV=atom. We
explored several other alternatives, but none seems
better justified; 15 meV/atom is the minimum shift
value that avoids the appearance of the fcc phase
in the Fe-rich region of the phase diagram. The need
of anchoring points at x = 0 and x = 1 forces us to
define energies of non-existing (unstable) phases for
which, strictly speaking, the Gibbs energies are ill
defined. This difficulty is inherent to the CALP-
HAD formalism and is also encountered when deal-
ing with experimental data requiring anchoring
points on phases that are not experimentally acces-
sible. Fig. 2(a)–(d) show the location of these points
in the four coefficients entering the definition of g,
Eq. (9): Solid squares represent data for the fcc
phase, with values for 0.8 < xCu < 1.0 and anchor-
ing point at xCu = 0.0; open squares represent data
for the bcc phase between 0.0 < xCu < 0.2, with
anchoring point at xCu = 1.0. With these consider-
ations, the coefficients appearing in Eq. (9) for the
three phases (/ = liquid, fcc, bcc), as obtained from
our numerical simulations, are reported in Tables
1–3. From the structure of these data we choose to
hase: liquid (open circles), fcc (solid squares), bcc (open squares).



Table 3
Coefficients of the free energy as a function of temperature, cf. Eq. (9), for the liquid phase of Fe–Cu alloys

xLiqCu A [eV] B [eV/K] C [eV/K2] D [eV/K]

0 �4.28610 2.37097E�03 �6.76295E�11 �3.82451E�04
0.002 �4.29362 2.45791E�03 3.31948E�09 �3.94422E�04
0.004 �4.28674 2.42227E�03 2.23661E�09 �3.89912E�04
0.01 �4.27355 2.37365E�03 1.42533E�09 �3.84300E�04
0.02 �4.26018 2.34670E�03 1.13394E�09 �3.81570E�04
0.05 �4.24251 2.42697E�03 4.76908E�09 �3.94123E�04
0.1 �4.19793 2.43993E�03 7.35201E�09 �3.98762E�04
0.2 �4.10003 2.37639E�03 9.49156E�09 �3.95188E�04
0.35 �3.97537 2.34051E�03 1.22849E�08 �3.95192E�04
0.5 �3.85195 2.26136E�03 1.29294E�08 �3.87798E�04
0.65 �3.72193 2.08482E�03 9.86382E�09 �3.66247E�04
0.8 �3.61760 2.05798E�03 1.06525E�08 �3.62702E�04
0.9 �3.56444 2.11319E�03 1.23469E�08 �3.68471E�04
0.95 �3.53277 2.08774E�03 1.14054E�08 �3.63898E�04
0.98 �3.52391 2.15427E�03 1.34532E�08 �3.71691E�04
0.99 �3.51786 2.14454E�03 1.28951E�08 �3.69887E�04
0.996 �3.50209 2.04871E�03 9.90364E�09 �3.56993E�04
0.998 �3.50700 2.09668E�03 1.15027E�08 �3.63299E�04
1 �3.50855 2.12037E�03 1.22168E�08 �3.66211E�04

Table 1
Coefficients of the free energy as a function of temperature, cf. Eq. (9), for the fcc phase of Fe–Cu alloys

xfccCu A [eV] B [eV/K] C [eV/K2] D [eV/K]

0 �4.25138 1.45938E�03 �1.40062E�08 �2.59855E�04
0.8 �3.60832 1.29580E�03 �1.91789E�08 �2.53386E�04
0.9 �3.56729 1.32543E�03 �2.23772E�08 �2.52135E�04
0.95 �3.55086 1.33524E�03 �2.50435E�08 �2.50261E�04
0.98 �3.54342 1.35094E�03 �2.51903E�08 �2.50525E�04
0.99 �3.54145 1.34823E�03 �2.64303E�08 �2.49216E�04
0.996 �3.54026 1.34867E�03 �2.67759E�08 �2.48917E�04
0.998 �3.53997 1.35420E�03 �2.64241E�08 �2.49379E�04
1 �3.53953 1.35140E�03 �2.68433E�08 �2.48949E�04

Table 2
Coefficients of the free energy as a function of temperature, cf. Eq. (9), for the bcc phase of Fe–Cu alloys

xbccCu A [eV] B [eV/K] C [eV/K2] D [eV/K]

0 �4.28000 1.45938E�03 �1.40062E�08 �2.59855E�04
0.001458 �4.27806 1.45599E�03 �1.42382E�08 �2.59431E�04
0.004373 �4.27443 1.45423E�03 �1.43561E�08 �2.59279E�04
0.010204 �4.26762 1.45695E�03 �1.41322E�08 �2.59716E�04
0.020408 �4.25453 1.44906E�03 �1.47284E�08 �2.58906E�04
0.049563 �4.22048 1.44485E�03 �1.38446E�08 �2.60285E�04
0.100583 �4.16233 1.42072E�03 �1.37780E�08 �2.60295E�04
0.199708 �4.06114 1.37250E�03 �1.41451E�08 �2.58918E�04
1 �3.49 1.35140E�03 �2.68433E�08 �2.48949E�04
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attempt a quadratic fit to determine the coefficients
0L/(T) appearing in Eq. (11). This is equivalent to
choosing to describe this alloy with only the L-term
with p = 0 in the polynomial expression (9), namely:
i/ ¼ xð1� xÞ0L/
i þ xi/Cu þ ð1� xÞi/Fe; ð12Þ

where i stands for A, B, C, and D. The 0L/(T) are
determined from these fits as:



Fig. 3. Phase diagram corresponding to the Ludwig–Farkas
EAM potentials for Fe–Cu alloys.

Fig. 4. Fe–Cu phase diagram obtained from CALPHAD data.
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0L/ðT Þ ¼ 0L/
a þ 0L/

bT þ 0L/
c T

2 þ 0L/
dT lnðT Þ: ð13Þ

With these quantities we have all the information
needed to calculate the phase diagram. Appendix I
contains the numerical expressions that can be used
‘manually’ with the common tangent construction,
or be input into Thermo-Calc [22] to automatically
obtain phase diagram information. Fig. 3 shows
the Fe–Cu phase diagram corresponding to the
Ludwig–Farkas EAM potentials.

3. Discussion

Comparison between the phase diagram dis-
played in Fig. 3 and the experimental one [27]
depicted in Fig. 4, shows reasonable topological
agreement up to 1000 K. At higher temperatures
noticeable differences appear. The origin of these
discrepancies can be analyzed by examining the
high-temperature properties of the pure elements,
and those of the (fcc and bcc) solid solutions.

With the EAM potential of Ref. [17], Cu exhibits
a fcc phase that melts at 1341 K, a temperature
quite close to the experimental value of 1358 K. In
Fig. 5 (left panels) the results for the enthalpy,
entropy and Gibbs free energy for this potential as
functions of temperature are compared with those
from the solid solution database (SSOL) from
Thermo-Calc [22]. The agreement between the two
sets of results is quite satisfactory at least below
2000 K. The bcc phase of Cu with this EAM poten-
tial is found unstable, as confirmed by its elastic
constants calculated at 0 K: C11 = 0.952 eV/Å3

and C12 = 1.012 eV/Å3, with C 0 = 1/2(C11 � C12)
being negative. It is worth noting that according
to the CALPHAD database, the bcc phase is stable,
although it does not explicitly affect the phase
diagram. Thus the instability introduces suspicions
about the ability of this potential to describe Cu
precipitates that, when small in size, are known to
be bcc. The evolution with size of a cluster of Cu
precipitates will not only be affected by the effects
of the constraint from the surrounding solvent,
but also by the relative stability of the bcc Cu phase.
Moreover it seems to have been unnoticed when the
Fe and Fe–Cu potentials were published [10,17].
For precipitation studies, the necessity of having a
bcc phase with the right energetics as a function of
temperature can not be overstated since any study
of precipitation will be affected by it.

Contrary to the potentials studied here, in our
previous study on the Ackland–Bacon EAM Fe–
Cu potentials [15,16], we reported a bcc phase of
Cu so stable that it entered the equilibrium phase
diagram. As said before, the free energy of bcc Cu
is reported in the CALPHAD database. However,
in the empirical potentials developed so far, the
properties of the bcc phase come out with little or
no control from the potential developers. As a con-
clusion we observe that despite the fact that Cu
is the element best described with EAM, further
attempts to reproduce the right thermodynamics
of its bcc phase may help to improve the capabilities
of the potential. Such attempts are currently under-
taken, and improved potentials for Cu are becoming



Fig. 5. Enthalpy (in kJ/mol) and entropy (in J/K mol) as functions of temperature for the fcc (bcc), and liquid phases of pure Cu (Fe) in
the left (right) panel. The bottom figures show the structural molar Gibbs energy differences (in kJ/mol) liq-fcc for Cu (left) and liq-bcc for
Fe (right), and the arrows indicate the location of the melting points. The solid lines refer to the CALPHAD results obtained from the
SSOL database whereas the dashed and dotted solid lines correspond to the EAM-derived results.
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available such as the one developed by Mishin et al.
[28] for diffusion studies.

With the EAM potential of Ref. [18], pure Fe
shows a bcc phase stable until melting occurs at a
temperature 28% higher than the experimental
value. The fcc phase of Fe is unstable above room
temperature. This fact is confirmed by the values
of the elastic constants calculated at 0 K. For fcc
Fe in Ref. [18], C11 = 0.998 eV/Å3 and C12 =
0.808 eV/Å3, and therefore C 0 = 0.190 eV/Å3, a sus-
piciously small value that presumably goes negative
at some finite temperature. None of the potentials
available so far for Fe predict the existence of the
fcc phase at high temperatures, as expected, because
it is the result of a fundamental change in its
electronic structure and magnetic properties rather
than in a mere competition between enthalpy and
entropy as T varies. However, Fe melts in the bcc
phase, and therefore it would be possible to signifi-
cantly improve the melting point by adjusting the
properties of the bcc and the liquid phases. In
Fig. 5 (right panels) the results obtained with the
present EAM potential for the enthalpy, entropy
and Gibbs free energy are compared with those
derived from the SSOL database as functions of
temperature. As in the case of the Ackland–Bacon
EAM potential [15,16], the discrepancies are severe
for the enthalpy and the entropy at high tempera-
ture above 1000 K for reasons mentioned above
although the melting point has been improved
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(2103 K compared with 2381 K for the Ackland–
Bacon EAM potential and 1811 K for the experi-
mental value). Despite the large effort undertaken
to develop improved Fe potentials, such as the
one recently reported by Ackland et al. [29], no ther-
modynamic analysis has been reported yet to judge
the quality of the potential.

The Fe–Cu alloy shows an eutectic at xCu = 0.75.
In the experimental/CALPHAD phase diagram a
peritectic appears because the liquidus in the Cu-
rich region is located at higher temperature than
melting of pure Cu and the peritectic reaction is
L + Fefcc ! Cufcc. In our case, the potential would
hardly predict the peritectic point in the Cu rich
portion of the phase diagram, given that the fcc
Fe phase never appears. Solubility limits are in
reasonable agreement with experimental values.
The almost symmetric behavior of these limits is
consistent with the retention of only the p = 0 term
in the Redlich–Kister expansion for the excess
Gibbs energy, Eq. (11), and with the experimental
data as well.

The behavior of these potentials for the Fe–Cu
mixture was modeled on the basis of the dilute limits
of the heats of solution, and this is to our knowledge
the strategy consistently followed for all alloys
described so far in the literature within the EAM
framework. The mixed pair potential is the only
function that contains information about the alloy-
ing effects. It can easily be shown that there is a one
to one relation between this formulation and the
fact that the excess enthalpy of mixing at 0 K is a
single-parameter quadratic curve, i.e., a curve that
only needs the term p = 0 in the Redlich–Kister
expansion. Besides the more involved contributions
coming from entropy, we can analyze the adequacy
of this symmetric single parameter description of
excess enthalpy of mixing by looking at its contribu-
tion at 0 K and comparing it with the CALPHAD
database. Fig. 6 shows the SSOL values and those
from this potential, for both bcc and fcc phases.
The agreement is remarkably good. Within a few
percent, EAM and CALPHAD values compare
favorably, and even more so in the regions of inter-
est, i.e., x � 1 for bcc and x � 1 for fcc solid solu-
tions. Despite the excellent agreement it can be
noted that the location of the solvus line in bcc Fe
appears to be shifted to larger Cu compositions
relative to the experimental/CALPHAD phase
diagram indicating the significant effect of entropy.
Note that the agreement for the liquid phase is
rather poor.
With these observations we conclude by high-
lighting the fact that alloy description is essentially
composed of two distinct contributions. One is the
description of the pure elements that, in the case
under study, is not very satisfactory at high temper-
atures. The other is the description of the mixture
that, for this alloy, is remarkably accurate up to
1000 K. The necessity of a more accurate descrip-
tion of mixtures at high temperatures is evident, as
in general, the p = 0 approximation in Eq. (11) is
not sufficient to describe most systems of interest.
Our analysis indicates that the EAM potentials
discussed here can be used up to 1000 K, and
that for higher temperatures, improved potentials
primarily for the pure components should be devel-
oped to account for proper phase stability in the
solid phase up to melting.

Regarding this last comment, we have recently
published a method to describe arbitrarily complex
formation energies via a generalization of the
EAM that includes concentration dependent interac-
tions [30]. These interactions are defined in such a
way that the formation enthalpy of the alloy under
consideration is fitted. We applied the method to
Fe–Cr alloys, where recent ab initio results predict
a complex behavior of the 0 K formation energy
[31], and arrived at a potential which is able to repro-
duce the order tendencies reported for this alloy.

Acknowledgments

Discussions with Larry Kaufman are gratefully
acknowledged. Work performed under the auspices



326 A. Caro et al. / Journal of Nuclear Materials 349 (2006) 317–326
of the US Department of Energy by the University
of California Lawrence Livermore National Labo-
ratory under contract No. W-7405-ENG-48, and
CONICET, Argentina, PIP-0664/98.

Appendix I

Free energies for all phases of pure elements and
coefficient for the Redlich–Kister expansions of the
excess free energy of mixing, Eq. (11), for Fe–Cu
alloys

gfccFe ¼ �4:25138054� 2:4630144� 10�4T lnðT Þ

� 1:5632073� 10�8T 2 þ 1:3533511� 10�3T ;

gbccFe ¼ �4:27999730� 2:5985509� 10�4T lnðT Þ

� 1:4006218� 10�8T 2 þ 1:4593817� 10�3T ;

gLiqFe ¼ �4:28610001� 3:8245119� 10�4T lnðT Þ

� 6:7629536� 10�11T 2 þ 2:3709670 � 10�3T ;

gfccCu ¼ �3:53953201� 2:4894946� 10�4T lnðT Þ
� 2:6843291� 10�8T 2 þ 1:3514004� 10�3T ;

gbccCu ¼ �3:49000 � 2:4894946� 10�4T lnðT Þ
� 2:6843291� 10�8T 2 þ 1:3514004� 10�3T ;

gLiqCu ¼ �3:50855397� 3:6621148� 10�4T lnðT Þ
þ 1:2216831� 10�8T 2 þ 2:1203670� 10�3T ;

0Lfcc ¼ 0:46899 � 5:0� 10�5T þ 3:4541� 10�8T 2

� 3� 10�5T lnðT Þ;
0Lbcc ¼ 0:39539 � 9:0� 10�5T þ 1:5131� 10�8T 2

� 1� 10�5T lnðT Þ;
0LLiq ¼ 0:17057 þ 6:4� 10�4T þ 4:2784� 10�8T 2

� 1� 10�4T lnðT Þ.
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